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On the Convection of a Passive Scalar by a 
Turbulent Gaussian Velocity Field 
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Through the use of the Novikov-Furutsu formula for Gaussian processes an 
equation is obtained for the diffusion of the ensemble average of a passive scalar 
in an incompressible turbulent velocity field in terms of the two-point, two-time 
correlator of this field. The equation is valid for turbulence which is not 
necessarily homogeneous or stationary and thus generalizes previous work. 
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One topic of mathematical and physical interest in turbulence theory is the 
description of the diffusion of a passive scalar C(x, t) by an incompressible 
velocity field v(x, t) whose statistics are known. 

We shall consider this problem for a scalar C(x, t) which obeys the 
convection-diffusion equation 

~C 
- - - I -  (v- V) C =  DV2C (1) 
Ot 

where D is the molecular diffusivity and the fluid has been assumed to have 
uniform properties. This equation is of practical importance, as C(x, t) 
could, for example, be the concentration of a pollutant or of a dye within 
the fluid. Knowledge of the behavior of this equation will also serve as a 
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basis for considering more complicated physical systems, such as .quid flow 
in which two chemically reacting compounds are present. An additional 
term specifying the reaction kinetics should then be given. 

Although Eq. (1) is linear in C(x, t), it can only be solved if the 
velocity field v(x, t) is known. However, if the flow is turbulent, v(x, t) 
--which is a solution of the Navier Stokes equation--is not known. There- 
fore, it is impossible to find C(x, t). Hence, one tries to find an equation for 
the mean concentration where all quantities occurring in the equation are 
expressed in terms of the statistical properties of the turbulent velocity 
field, which we assume to be known. 

We can rewrite Eq. (1) in the form of an integral equation, 

C(x,t)=C(x,O)+f G(x,t]x',t')(v(x',t').V')C(x',t')d3x'dt ' (2) 

provided the initial concentration C(x, 0) and the appropriate boundary 
conditions are specified. In Eq. (2), G(x, t lx', t') is the Green function for 
the diffusion equation, 

a(x, tIx', t ')=O(t-t')[4D(t-t')] 3/2exp{-(x-x')2/4D(t-t')} (3) 

where O(t-t') is the Heaviside step function. 
Equation (2) is a linear stochastic integral equation for C(x, t) with 

random coefficients. We refer to van Kampen's review papeff 1) for a 
general discussion of such equations. 

Before turning to our derivation of an equation for the ensemble 
average (C(x, t)> of the field C, we want to mention briefly some earlier 
work on the diffusion problem in a fluid. The first major discussion of this 
problem is the one given by Taylor. (2~ By first considering a discrete 
random-walk problem such that there is a nonzero correlation between 
successive displacements and then generalizing it to a continuous process, 
Taylor was able to write down an equation for the mean displacement; it 
has the form of a modified diffusion equation with a diffusion coefficient 
which is expressed in terms of the velocity correlation function. 

Krachnan (3) also considered a Laplacian description of the turbulent 
velocity field for both two- and three-dimensional, incompressible, 
stationary, homogeneous, and isotropic fluids. He treated the velocity field 
as a Gaussian variable. In both the two- and three-dimensional cases he 
considered two energy spectra E(k), one sharply peaked and one with a 
Gaussian shape, both centered at the same wave number ko corresponding 
to a certain correlation length, l ~  ko 1, for the velocity field. The time- 
correlation function of the velocity field was taken to be exponentially 
decaying, oc exp ( -1  .2.2, Numerical simulations were carried out and ~tUot ). 
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compared with the numerical solution of the corresponding equations 
which had been derived by Roberts,(4)who had applied Kraichnan's direct- 
interaction approximation (DIA) (5~ to the diffusion problem. If coo~vo/l , 
the reciprocal of the eddy circulation time (% is the root-mean-square 
velocity in any direction), he expected, following Taylor, (2) that, provided 
co o t ~> 1, the eddy diffusion will act like a random walk with mean free path 
l and thermal velocity vo. As t--, o% one expects that the Lagrangian 
velocity covariance will tend to zero, the effective eddy diffusivity will tend 
to a finite limit, ~vol, and the dispersion will become proportional to t. 
The two simulations were in good agreement, although the velocity fields 
generated were chosen from a Gaussian ensemble of solenoidal vector fields 
which were, on average, isotropic but, in general, not solutions of the 
Navier-Stokes equation. 

Analytical studies were also carried out by Saffman, (6~ Zel'dovich, (7~ 
and Phythian and Curtis. (8) Saffman (6) introduced a normally distributed 
vector function A such that 

(Ai(x, t )Aj(x +r ,  t + v ) >  =6ij6(r) 6(z) (4) 

He expanded all variables as series in Wiener-Hermite functions, that is, 
statistically orthonormal combinations of the Ai, so that the diffusion 
equation for C(x, t) is transformed into an equation for the unknown 
expansion coefficients. Closure results from averaging and truncation of the 
series. The equation which Saffman obtains--to (9(A)--is (summation is 
implied over repeated indices) 

3 ( C )  0 ct 
~-x o0 | (C(x, t ' )>(vi(x,  t) vj(x, t +  t ')> dt' (5) 

0t 0xi j 

which is consistent with Taylor's result. Saffman suggests that the 
advantage of his procedure is that one can systematically improve the 
approximation by shifting the truncation to higher orders. 

By first considering diffusion in the simple velocity field v =  
(2u cos ky cos cot, 0, 0) and then using a Kolmogorov cascade of similar 
eddies, Zel'dovich (7~ finds the effective diffusivity in terms of the molecular 
diffusivity. Phythian and Curtis (8) use field-theoretic diagram techniques to 
find an expression for the long-time effective diffusivity for a Gaussian, 
homogeneous, isotropic, and stationary velocity field. 

Recently, Avallaneda and Majda (9) have developed a Stieltjes-integral 
representation for the large-scale effective diffusivity in the case of "frozen 
turbulence," that is, an ensemble of steady flows. This is rigorously proven 
to be valid for all P6clet numbers Pe( = VL/D, where V is a characteristic 
velocity such as the root-mean-square velocity and L a characteristic length 
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such as the correlation length). However, the question of how to use this 
method to address some physically interesting problems has not yet been 
answered. 

In the work of Saffman, (6) Zel'dovich, (7~ and Phythian and Curtis, (8) 
by analogy with the eddy viscosity, the notion of an eddy diffusivity, which 
is possibly a tensor, arises. The effect of the turbulent fluid motion is to 
"renormalize" the molecular diffusivity. It is of practical importance to 
determine a form of the eddy diffusivity so that the governing equation (1) 
may be replaced by a simpler description which is realistic enough to 
represent adequately the behavior of the physical system. The exact nature 
of the eddy diffusivity has not yet been determined. Whether it lessens the 
molecular diffusivity--"destructive interference"--irrespective of the par- 
ticular details of the fluid flow is not known. It is the form of the turbulent 
diffusivity that we shall discuss here. We note that the asymptotic existence 
of the eddy diffusivity has been proven in a mathematically rigorous way 
in the work of Papanicolaou and collaborators (ref. 10 and references 
therein). Obtaining expressions in terms of the turbulent velocity statistics, 
however, remains a challenging problem. 

In the present paper we use a technique first developed by Moiseev 
et al., m)  who considered the evolution of velocity and density perturba- 
tions in a compressible fluid. We have earlier (12) used the same technique 
to examine velocity perturbations in an incompressible fluid and Moiseev 
et al. ~3) have used it to discuss vortex formation in a convecting fluid. 

Let us assume that for times t < 0, C(x, t) is everywhere zero. At some 
initial instant, say, t = 0 ,  the same concentration (C(x, 0))  is imposed on 
every single realization of the flow. At all subsequent times the total 
concentration may be expressed as 

C(x, t) = (C(x, t ) )  + Cn(x, t) (6) 

where C n is the fluctuation in the concentration, so that by definition 
(Cn(x, t ) ) - 0 .  

The total concentration obeys for t > 0 the diffusion equation (1). If 
the velocity field is taken to have no mean flow, then an equation for the 
mean concentration can be found by inserting Eq. (6) into Eq. (1) and 
averaging. It is 

a (c )  
+ ((v-V) C n) = D V 2 ( C )  (7) 

at 

The fluctuation Ca(x, t) is formally a functional of the turbulent velocity 
field. It may therefore be expanded in a functional Taylor series. Multiplying 
this expression by the velocity field and then averaging will give the 
correlator in Eq. (7) as a series in the moments of the velocity field. If the 
velocity field has a Gaussian distribution, then all even moments of v(x, t) 
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will reduce to the product of second-order moments, all odd moments 
being zero. 

By this method the so-called Novikov-Furutsu (14'15) formula was 
derived. For any function F(q) of a Gaussian field q of zero mean one has 

<cSF>3q(_~,t,) (q(x,t) F>=f  (q(x,t)q(x',t')> d3x'dt ' (8) 

In our case, F =  crY(x, t) and q(x, t) = v(x, t), so that the Novikov-Furutsu 
formula becomes 

aC"(x, t) \ d3x, at' <v,(x, t) C~(x, t)> =f  <v,(x, t)v~(x', r)> (9) bvj(x', t ')/  

The Gaussian assumption is used for mathematical simplicity. For the 
larger scales of turbulence, which can be imagined as independent eddies 
buffetted by the small-scale motion, this approximation is not too bad, u6) 
but experimental evidence suggests (17) that the small scales are not 
Gaussian, due to the fact that such scales are strongly intermittent. 

In order to calculate the functional derivative required in Eq. (9), an 
equation is needed for Cn(x, t). This can be obtained by putting Eq. (6) 
into Eq. (1) and simplifying using Eq. (7); this gives 

0C n 
- - + ( v ' V ) < C > + ( v ' V ) C n - ( ( v ' V ) C n > = D V 2 C  n (10) 

& 

Using the Green function G(x, t] x', t') for the diffusion equation, we can 
integrate Eq. (9) ,to give the formal solution 

t )=f  G(x, t lx ' ,  t){ ((v(x', t ' ) ' V ' )  Cn(x, C n > 

- (v(x ' , t ' ) 'V ' ) (C>-(v(x ' , t ' ) 'V ' )Cn}d3x'dt  ' (11) 

where the initial condition Cn(x, 0 ) = 0  has been used. Taking the 
functional derivative and then averaging, using 

av,(x, t) 
6vj(x', t') 6 i ;6(x-x ' )6( t - t ' )O(t- t ' )  (12) 

we find 

( aC"(x, 0 \  
6v/x', r ) /  

a<C(x', r)> 
= --G(x, t[ x', t') ax; 

; I - ' " r') vk(x", r') L ~ t ~  J/d3x" d t  tt 

(13) 
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This may be estimated as 

N,.~v% / 6Cn\ 
L \ 6v / (18) 

where v is a typical velocity, such as the root-mean-square velocity, which 
can be expressed in terms of the P6clet number as v = P e . D / L .  The 
contribution of the integral N in Eq. (13) is negligible as compared to the 
left-hand side provided vzc/L ~ 1. Thus, the conditions for our theory to be 
valid can be written as 

(D~cc)I/2 [ ~ ] 4 1  (19) ~ ~  1 and Pe .(D )1/2 2 

Diffusive or convective effects may dominate, and the theory will still hold, 
provided the P6clet number is not too large. These two conditions can also 

310 

This equation is not closed. If, however, the correlator 

L %(x', c) J /  (14) 

is assumed to vary much more slowly in space than the Green function, we 
have 

( N - = j  f G(x, t lx  , " t") ~(x, t") L ~ tv)J/d~x" 

f d,,, @x,, ,,,) • I-6Gx--:" L")7 \ 
axg L %(x', t') J /  

X f d3x " G(x, tt x", t") (15) 

This will, for example, be the case when 

(D-c,.) 1/2 
- - 4 1  (16) 

L 

where L is the correlation length and rc the correlation time. The integral 
over space can be done analytically, if we use Eq. (3), and we get 

t ) ~ x , L . ~ t , l j / O ( t - t '  ) (17) 
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be interpreted as saying that the correlation time must be small compared 
to the turnover and diffusion times. Given Eqs. (19), the "mixed" correlator 
is found to equal 

(vi(x, t) C~(x, t)) = - f  Ru(x, t]x', t') G(x, tFx', t) 

~(c(x',  t)) 
• d3x ' dt' (20) 

where R o is the two-point, two-time correlator of the turbulent velocity 
field, 

R~(x, tlx', t')= (vi(x, t)~j(x', t')) (21) 

Combining Eqs. (7) and (20) gives the equation which governs the evolu- 
tion of the mean concentration: 

8 
8 ( C ) - D V 2 ( C ) +  f Ris(x, t lx ' , t ' )G(x,  t lx ' , t ' )  

6~(C(x ', t ' ) )  d3x, • dt' (22) 0x; 

This equation is a generalization of Saffman's result. It is valid for the case 
when the molecular diffusivity is nonzero, and it is also valid for non- 
homogeneous turbulence. Given the two-point, two-time velocity correla- 
tion function and the initial concentration (C(x, 0)),  it should be possible 
to find from Eq. (22) the concentration at any subsequent time, either 
analytically or numerically. The effect of the turbulent motion has been to 
produce a diffusivity tensor which is space- and time-dependent and which 
is not necessarily diagonal in form. The Green function, it should be 
remembered, has as a factor the Heaviside step function O(t-  t'), ensuring 
that causality is not violated. As Eq. (22) is not restricted to homogeneous 
turbulence, the mean helicity density y = ((v" o~)) (o  is the vorticity) is not 
necessarily zero, and may affect the value of the integral on the right-hand 
side. Numerical simulations by Drummond et al. (18) seem to suggest that 
existing theories describe nonhelical turbulence reasonably well, but fail 
when a small value for the helicity is introduced. Their "velocity fields" are 
generated in the same way, however, as in the simulations of Kraichnan. (3) 

If D = 0 ~ t h e  case in which the concentration field is "frozen" into the 
flow--we have 

G(x, t lx ' ,  t') ~ 8 ( x -  x') (23) 
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As a consequence, integration over the spatial coordinates on the right- 
hand side of Eq. (22) can be carried out, the result being 

a<C> 0 2 fO ~t Oxi~?xj Ru(x, t lx ' ,  t')< C(x, t') > dt' (24) 

which is precisely Saffman's result, Eq. (5), for the effective diffusivity when 
D = 0 .  

If the flow is homogeneous, isotropic, and stationary, we have 

Ro(x, t lx ' ,  t ' ) = ~ - ~  6~(~(t-t ') (25) 

where ~b(T) is a dimensionless time correlation function. This leads to the 
equation 

a<C> = <v2> Vz ~(t-  t ' )<C(t ' )> dt' (26) 
Ot 3 

If the correlation time is much shorter than any other relevant time scale, 
the time correlation function can be modeled as ~b(r)= zc6(r), so that 

a<c> <v2> 
•t 6 

- -  rcV2<C(t) > (27) 

This is simply the diffusion equation; the eddy diffusivity is in this case 
positive definite. We note that a complementary problem, the determina- 
tion of the structure function of a passive scalar, has been addressed in two 
recent papers, one by Effinger and Grossmann (19) and the other by Lesieur 
and Rogallo. (2~ Taken together, the evolution and properties of the mean 
scalar field and its fluctuations provide a fuller description of turbulent 
flow. 

We have thus derived an equation which governs the evolution of 
the mean concentration for the case of a turbulent velocity field that is 
incompressible, is of zero mean, and possesses a Gaussian distribution. The 
equation is valid for turbulence which is not necessarily homogeneous or 
stationary and it thus gcncralizes previous work. Whcn D = O, the equation 
reduces to Saffman's result. 
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